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FOREWORD

a:s:i This report contains the abstracts and viewgraphs of the presentations at the Twelfth
o Annual Mechanics of Composites Review sponsored by the Materials Laboratory. Each
jss::: was prepared by its presenter and is published here unedited. In addition, a listing of both
) the in-house and contractual activities of each participating organization is included.

i)

2

,:"‘.;' The Mechanics of Composites Review is designed to present programs covering
._:::; activities throughout the United States Air Force, Navy, NASA, Army and FAA.
{ Programs not covered in the present review are candidates for presentation at future
s Mechanics of Composites Reviews. The presentations cover both in-house and contractual
‘ :3 programs under the sponsorship of the participating organizations.

19 0%

)

) Since this is a review of on-going programs, much of the information in this report
'-?S has not been published as yet and is subject to change; but timely dissemination of the
Y rapidly expanding technology of advanced composites is deemed highly desirable. Works

)
12 3 in the area of Mechanics of Composites have long been typified by disciplined approaches.
. It is hoped that such a high standard of rigor is reflected in the majority, if not all, of the
oL .
N resentations in this report.
N P PO
)
A Feedback and open critique of the presentations and the review itself are most
4 pe q
j welcome as suggestions and recommendations from all participants will be considered in
bl the planning of future reviews.
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ia‘fn AIR FORCE INTERESTS IN COMPOSITES RESEARCH

e George K. Haritos

o Air Force Office of Scientific Research (AFOSR/NA)

W - Bolling Air Force Base DC 20332-6448

3 4

P W ABSTRACT

a('. v The Air Force has long recognized the potential that composite structural materials have in aerospace
W W applications. A_ccordingli/, the Air Force has supported and continues to support research in composites
o conducted at Universities, Industry, and Government Laboratories. Our understanding of composites, although
.',':o still in an evolving state, and a number of successful applications have demonstrated the gains possible when
A various materials are carefully combined at the microstructural level to yield the desired mechanical properties.
fb, This observation has revolutionized the approach of "designing” new structural materials and opened up

( seemingly endless possibilities.

o As we move into an era of hypersonic flight, space-based operations, etc., we will have to take advantage of the
B potential presented by this process of "engineering” the microstructure in order to meet the extraordinary
A performance and reliability demands which will be placed on future structural materials and systems. The
:’_‘.: resulting multi-phase matenals are expected to highly anisotropic and inhomogeneous. —&2 /4 5 3\‘47
! As an example of the engineering process of composites from the constituent materials like continuous parallel
s fibers and a highly compliant matrix, the traditional micromechanics can be combined with macromechanics to
s achieve a level of design not %zssible with the conventional homogeneous material. With an integrated micro-

’_{:. macromechanics analysis or Mic-Mac, the contribution of each constituent to the stiffness and strength of a

00y laminated structure can now be quantitatively stated. As composites enter into heavily loaded aplplic?tions, thick

s laminates must be used. The finite thickness rqc]:ures higher order theory than the classical laminated plate
.(: theory. The stiffness and strength associated with the thickness direction must be properly modeled. This is

{ done by the emerging activity of minimechanics. The transverse shear coefficient and the interlaminar failure
. criterion can now be cngincered following the same method of micromechanics. Thus we can now have an

e integrated micro-mini-macromechanics, or Mic-Mini-Mac.

’ ’.. » . s -

i, > But these application oriented solutions do not deal with many critical issues of mechanics and materials

?

(S

research. Nonlinearity, time-dependent I[:henomena are not addresses. The interface between phases is
assumed to remain continuous. In fact, each constituent also remains continuous. Thus the basic research

thrust in the mechanics of multi-phase materials will be directed toward identifying, mathematically modeling,
and experimentally observing the actual mechanisms goveming their behavior subjected to a wide spectrum of

> mechanical, thermal, chemical, and electromagnetic loading. This understanding is critical for accurately
';f estimating useful service life, establishing inspection/maintenance procedures and schedules, and calculating
- life-cycle costs.
P
[ Specifically, we are interested in the constitutive modeling of multi-phase materials, to include the interactions
. associated with the material microstructure, and the onset and evolution of damage as a time-dependent process.
v ted with the material ostruct d th t and evolution of damag time-dependent p

e The unprecedented levels of reliability demanded of these future systems will also require a fundamental
NN understanding of the response of structural materials to very high temperatures and severe temperature gradients
.- and to high energy bombardment. Research issues include transient dynamic thermo-mechanical modeling,

o damage and failure development, life prediction and associated diagnostic techniques.

M . . .

. L To focus attention to these issues we have successfully presented to the senior Air Force research management a

4 new research initiative, entitled "Mesomechanics: The Microstructure-Mechanics Connection.” The term

L J "mesomechanics” is intended to describe an area of research which bridges the microstructure-property
Ly relationship of materials with non-continuum mechanics. It expresses our belief that real progress in this
by endeavor can only come about by fostering a closer collaboration between the material science and the
' engineering mechanics communities. Quite contrary to the traditional approaches which seek to develop
o constitutive models from phenomenological observations of materials behavior, mesomechanics seeks to apply
! g' mechanics principles to the microstructural constituents of multi-phase materials, thus placing the
S microstructure-properties relationship on a quantitative basis.
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The traditional continuum mechanics approach establishes a set of mathematical relations which link the intrinsic

' ‘ . . . - * . . .

;:a‘::i stresses with deformation, i.e., strains. These relations are assumed uniformly valid for material elements of
oy arbitrary volume, implying that particle interaction is local, or at an arbitrarily infinitesimal range. This
:fv::fe assumption permits us to apply the concept of limit of differential calculus throughout the interior and on the

boundary of the material body. It also allows deriving material response relationships with sufficient generality
without inquiring into material microstructure and micromechanics of deformation.

5 Q‘

'::"\ In multi-phase materials, such as fiber composites, the limiting scale is of the order of the fiber diameter or layer
ﬁ‘w,: thickness. Whatever the limiting scale, care must be taken to either account directly for the individual
.:n: microstructure and micromechanics, or to retain their importani effects in a phenomenological description.
falgte Thus, the developed approaches associated with the traditional continuum assumption may no longer be
W applicable.

\

L The development of non-continuum mechanics approaches must overcome a number of significant obstacles.
=.}.$ Progress in two areas a;ﬂ)ears as a necessary prerequisite to progress. First, the material microstructure must be
Ny described mathematically--the complex shapes, orientation, and distribution of phases. This will serve as the
.:.:.,u common language used by mechanicians and materials scientists alike. Second, the kinematics of
e, microstructural evolution must be linked with mechanics. This seems at this time to be the most difficult task.
‘& Most of the work in relating the evolution of microstructures to thermodynamic forces has been in the field of
{ metallurgy. Mechanistically linking the differential changes in the microstructure with mechanical force would
Rt require considerably better understanding of the evolving load-microstructure interaction mechanisms.

: N The difficulties inherent in this new effort cannot be overstated. It is clear that it will be necessary for the
.':" mechanician and the materials scientist to join efforts and perform as a team. Repeated and refined correlations
el between physical understanding and mathematical description for the phenomena under consideration. This will
a be a major challenge to both communities.
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THE SENSITIVITY OF KEVLAR/EPOXY AND GRAPHITE/EPOXY STRUCTURES
TO DAMAGE FROM FRAGMENT IMPACT

e??

\% Paul A. Lagace

. () ¥

f‘&s TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES
’au Department of Aeronautics and Astronautics
ihﬁ ; Massachusetts Institute of Technology

Cambridge, MA 02139

A ABSTRACT

e

o

W&.. The response of composite laminates to impact is an important
W consideration in assessing the overall damage response (damage
‘?h” resistance and damage tolerance) of a composite structure. Laminated

composites are sensitive to impact due to their tendency to delaminate.
Furthermore, this damage often goes undetected although it may cause

¥ considerable performance (e.g. strength, stiffness) reduction in the
’ Fk composite part. The effort in this program is directed toward first
AT establishing the basic response of composites to impact via generic
34¢' specimens (i.e. coupon type), analysis of the impact event, and the
Ag response of the composite to the damage induced by the impact. Once the
Py, basic mechanisms are established and better understood, the work is
abSl progressing to structures typically used in aircraft such as stiffened
o panels, pressurized cylinders (which model fuselages) and the like.
=
‘:: The current presentation focuses on the analysis and basic response
ot (via experimentation on coupons) segment of the work. In this work, the
*xﬁ impact and post-impact response of graphite/epoxy and Kevlar/epoxy
':&3 laminates was investigated over a wide range of parameters. The
AN parameters considered were impactor kinetic energy, target boundary
P " conditions, impactor mass, material types, and the influence of preload
] on the impact event. The study included analytical and experimental
vy investigations for impact response and post-impact residual strength.
‘:'2 After having inflicted impact damage with 12.7 mm spheres, the specimens
: iJ were evaluated using dye-penetrant-enhanced X-ray and ultrasonic C-scan
S techniques. The specimens were loaded monotonically to failure to
AR determine the post-impact residual strength. An analytical methodology
ol using a global model to predict the impact event and a local model to
19N predict the damage was developed and compared with the measured damage
i:) data. The global structural model is based on a Rayleigh-Ritz energy
e method to develop a set of coupled, ordinary differential equations in
) $ time. The local model is an analytic, theory of elasticity approach to
\\Q the region near the impact. An equivalent membrane model for the
h \* damaged region with an average strain criterion was used to predict the
:ﬂ post-impact residual strength given the damage state. The concepts of
o damage resistance and damage tolerance are, thus, considered

independently. The results from the analytical impact models followed

i
"

. the same trends in predicting damage as the experimental data. The
¥ analytical residual strength predictions followed the same trends as the
k 2 measured residual strength for in-plane dominated fracture, The results
.5 3 show that both the structural and material behavior must be considered
fu? in predicting damage. Residual strength was found to be a function only
‘j of the damage present for in-plane tensile fracture.
SO A consistent analytical design philosophy for composite structures
® subjected to impact is proposed. This partitioning of the problem into
s v global and local phenomena effectively separates structural and material
c*:_ effects. This is illustrated for the present case of coupon specimens.
"
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TENSOR TRANSFORMATIONS AND FAILURE CRITERIA
FOR THE THREE-DIMENSIONAL ANALYSIS OF FIBER COMPOSITE MATERIALS
Richard M. Christensen

Lawrence Livermore National Laboratory
University of California
Livermore, CA 94550

ABSTRACT

Classical lamination theory for fiber composites is inherently limited to the 2-
dimensional conditions appropriate to thin shell configurations. A new derivation
with appropriate tensor transformations is given which provides a fully 3-dimensional
lamination theory that is applicable to thick laminates involving "out-of-plane"
stress terms. The form taken by the lamina stress strain relations which permits the
development of the 3-dimensional lamination theory is given by

0y = Aekkcij + 2ueiJ + (E11~E) 611513811 1)
where
E = 2(1 + “12) Myo
Lo e
1—2\)12 12
and
R PN

It also follows that Poisson's ratio v corresponding to A and u is given by v = Vige
where axis 1 1s in the fiber direction.

The form (1) is for a transversely isotropic fiber reinforced medium that has
properties determined by three measured constants, E1 and v,,. Relation (1)
reveals that the fiber composite can be viewed as an effecélvely isotropic medium with
superimposed one dimensional reinforcement through the last term in (1), This last
term shows that the fiber reinforcement has a direct effect in that strain €4 (with
axis ! in the fiber direction) causes a stress o of amount (E:1 -E) €190 l
otherwise the fiber reinforcement {s of an indirect effect, as that of an 1nclusion
phase in a matrix phase. This indirect effect manifests its self through the
isotropic terms involving X and u which in turn are determined by the measured
properties u and v This reduced form of the stress strain relation has been
evaluated with respect to typical data, The result (1) now renders the tensor
transformations to a trivial form, even under 3-dimensional conditions,

The simple, compact, stress strain form (1) for the fiber composite admits the
development of a correspondingly simple failure criterion. [t is shown that the
failure criterion derived from (1) 1s given by

Direct
Fiber €
Failure

(=) (+) (2)

Fiber/Matrix
Interaction a € + e, ,e.. <Kk (3)
Failure Kk LR
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3 Parameter k/v2 in (3) is the shear strain at failure, while the first term, a I,,
#m involves the coupling with dilatational effects. The relations (2) and (3) are the
:p? failure criteria derived in accordance with the restricted form of the tensor
N transformation relations. Thus the overall, three-dimensional criterion, which breaks
gl down into two separate criteria, involves four parameters to be determined from
" experimental data: e¢,.(-), er(*). a and k. Three aspects of the tensor transformation
p forms contributed to the derivation of the fajilure criterion., First was the
e decomposition of direct fiber reinforcement effect in the stress constitutive relation
apart from the indirect part wherein the fiber effect is acting as an inclusion phase
:Q-ﬁ rather than as a direct load transfer agent. Secondly, the indirect effect of the
'\v\ fiber reinforcement part of the stress constitutive relation took an extremely simple
? form that is completely isotropiec. The third key ingredient in this derivation was
the necessity for using strain as the primitive variable, rather than stress. The
‘.) failure criteria (2) and (3) are evaluated with respect to published data.
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ANALYSIS OF FATIGUE DAMAGE IN FIBROUS BORON-ALUMINUM LAMINATES

V‘
]
R
;:;::‘ C.J. WUNG and G.J. DVORAK
]
:JQG Department of Civil Engineering
~d§' Rensselaer Polytechnic Institute
v Troy, New York 12180
f;:nf.'.
) ‘T
PN
,:.:, ABSTRACT
e
-¢¢d When Boron-Aluminum composite laminates are subjected to cyclic loading in the
{dg plastic range, they may exhibit two entirely different types of response [l]. If the
1 4 applied stress amplitude is such that the composite shakes down, then the laminate
: will reach a saturation damage state 1n wihch no futher fatigue cracking takes place
:ﬂf' and the specimen can then survive two million cycles of loading. On the other hand,
’yf' if the applied stress amplitude is such that the laminate does not shake down, then
s % the damage process continues to the point where the zero-degree plies are overloaded
kQ? and the laminate fails.
)
deﬂ Modeling of this damage process entails substantial complexity due to the
PS interaction between the composite plastic deformation and the matrix cracking. The
N alternate approach is to focus on the modeling of the terminal state of damage, i.e.,
%ﬁ the saturation damage state, without attempting to follow the evolution of damage
hfﬂ through the damage accumulation stage.
:Sﬁ An equivalent problem is formulated in such a way that the plastic straining and
o crack density in each layer can be calculated separately to meet the shakedown
8! requirements [2]. If the fibers in the zero-degree layers do not become overloaded
’ in this calculated shakedown state, then the laminate will shake down and the final
Lt stiffness loss at this saturation damage state can be found. If the =zero-degree
AR fibers become overloaded, then the calculated shakedown state can not be reached and
Lk the laminate fails. Comparison with the experiments on laminated B-At plates shows
. \: excellent agreement.
1 h
o
N REFERENCE
wh l. G.J. Dvorak and W.S. Johnson, "Fatigue of Metal Matrix Composites,” International
3 } Journal of Fracture, Vol. 16, No. 6, 1980, pp. $85-607. "
)
ﬁf‘ 2. C.J. Wung, "Strain-space Analysis of Plasticity, Fracture and Fatigue of Fibrous
p‘ Composites,” Ph.D. Dissertation, Department of Civil Engineering, University of
) Utah, March 1987.
3. W.S. Johnson, "Characterfzation of Fatigue Damage Mechanisms in Continuous Fiber
R Reinforced Metal Matrix Composites,” Ph.D. Dissertation, Department of Civil
;g\i Engineering, Duke University, 1979.
»
: e 4¢ CoJ. Wung and G.J. Dvorak, "Strain-space Plasticity Analysis of Fibrous
R Composites,” International Journal of Plasticity, Vol. 1, 1985, pp. 125-139,
‘ v,I
’.' 5. G.J. Dvorak, N. Laws, and M, Hejazi, “"Analysis of Progressive Matrix Cracking in
- Composite Laminates, I. Thermoelastic Properties of a Ply with Cracks,” Journal
§ﬁ£ of Composite Materials, Vol. 19, 1985, pp. 216-234.
o
:.‘-f 6. N. Laws and G.J. Dvorak, "The Effect of Fiber Breaks and Aligned Penny-shaped
‘%j Cracks on the Stiffness and Energy Release Rates in Unidirectional Composites,”
L to appear in International Journal of Solids and Structures.
o
7. N. Laws, G.J. Dvorak, and M. Hejazi, "Stiffness Changes {in Unidirectional
ZEAl Composites Caused by Crack Systems,” Mechanics of Materials, Vol. 2, 1983, pp.
ol 123~137.
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w o] w» g E (Dvorak and Johnson [1])
§ 8| 8/ 8| » §(B| 8|" %
S " § é' Matrix transverse cracking
: ' ° g E e in the off-axis plies
R a | £ 3 ] g
: g 2 & g s [Load is transferred to other stiffer plies_l
Z H 3] <
o & > ; > b
'(- ~ e *.' .
*i.,' 3 = " g s | 0° plies carry most of the loaﬂ
Yo zZ 13 2 &
e 3 : - £ § Cracks with their planes perpendicular to the
W g i S 2 2 fiber direction start to form in the 0° plies
d g 2 $
o g 5 b =2 LLoad is transferred to the 0° ﬁberﬂ
e
P 3 z &" fibers become overloaded ?J
R E :61 Yeos No
® ———il e E Final failure| |Saturation damage state
5d 2 & a3 = 3 =3 z (Shakedown state)
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::t:f Strain-Space Plasticity of Fibrous
."e, Composites (Wung and Dvorak [4]) Initial and Subsequent Relaxation Surfaces
(
I (1st Cycle)
' Aluminum matrix: elastic-perfectly plastic
Y of the Mises type
;.‘:: Boron fibers: elastic until failure
l" {}
. l" aps .
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Matrix Transverse Cracking:
(Dvorak, Laws, and Hejazi [5)

20/8 | 20/8

B: Crack Density

Matrix Crachking in the 0° Plies

The matrix cracks observed in the 0° plies
are aligned cracks with their planes
perpendicular to the fibers.

These cracks can be modeled as
penny-shaped cracks imbeded in the
composite.

Modeling procedure: Laws and Dvorak [6]
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Relaxation Surfaces of a 90° Layer at Different

Crack Densities
40
Boron/Aluminum
°
20 90° Layer
20 - 0. 0.80 1.00
10
»
d o
L]
L]
¥ 0
|
_”' ¢ Ceonter of compressive branch
0 Center of tensile brench
----Line of separation !
-0 l '
-20 -10 0. 10 20 30 40 80 60
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Relaxation Surfaces of a 0° Layer at Different
Crack Densities
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i € Expanded Relaxation Surfaces for Loading
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Change in Elastic Modulus of a B-Al Plate ,
Related to Applied Stress Range Rcwl tod

S o0 Boron/Aluminum

A 7100 (0)3 400
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(0,448,90,0,£46,190),
aso | Vim 48
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300 9
400
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} 200
&

100 = Theoretical

n\" —— Theoretical prediction 3::;]. (Dvorak and Johnaoa [1])
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'-'- ! ON MODELLING INTRALAMINAR AND INTERLAMINAR CRACKS
1;,; IN GRAPHITE-EPOXY LAMINATES
) ;‘l
:f,v,: A. S. D, Wang
?,
ot
o Drexel University
(L Philadelphia, PA 19104
L) ABSTRACT
e Azollont
! %4 This paper glves an overview of a descriptive method which simulates the initlation and growth of
:; 5‘3 matrix cracks in graphite-epoxy laminates. The method 1s developed by first observing the physical mech-
W anisms of formatlion and propagatlion of matrix-dominated cracks at the sublaminate scale, and then modell-
o 3 ing these cracks by means of ply elasticity and fracture mechanics concept of stralin energy release rate.
e In each key step of the method development, some results and examples are used to illustrate the main
points.
E)
.:" For the class of laminates made of unidirectional plies, two basic forms of matrix cracking are iden-
“\. tified: intralaminar cracking and interlaminar cracking. Generally, these two forms of cracking occur
:t:,' interactively. But, in order to study their individual mechanisms, it is possible to design test coupons
Win that yleld only one or the other form of cracking. For intralaminar cracking, the L0/90]s type tensile
|."‘.c coupons are used Which yleld transverse cracks in the 900 layer; for interlaminar cracking, the [+25/90]s
it and [ +45/0/90]s tensile coupons are used to yield free edge delamination. Initial effort to simulate
® these cracking mechanisms individually under static loading conditions was reported in Ref. [1] and [2].
.Ih‘
e Simulation of multiple transverse cracks as a function of loading needs an additional assumption of
3 ’ non-uniform materlal strength. Here, the concept of distributed effective flaws in the ply is introduced
Tt and 1ncorporated in the energy model. Description of this concept and simulation results were reported in
Ref. [3]. Extenslon of the method to compression induced free edge delamination was reported in Ref. [4],
qoe) and application *o cracks induced by cyclic fatigue loading in Ref. [ 5] and [ 6].
f “shen the two basic forms of matrix cracking occur interactively, material damage is usually very
‘;!;': localized. To describe such localized damage and damage growth, the energy model requires a trully 3-D
‘.'g:, siress analysis and a fracture criterion for contoured plane crack growth. Both these requirements are
,)",c difficult to fulfill, however. Attempts are made here to mimlc some of the observed damage forms by a
.-".,0 finite element routine, and the results show some promises and disappoints, Ref, [7,8].
‘ +
. "f REFERENCES
3 1. A. S. D. dang and F. W, Crossman, "Initlation and Growth of Transverse Cracks and Edge Delamination
A in Composite Laminates, Part 1, An Energy Method,” Journal of Composite Materials, Vol. 14, 1980,
'_,\ rp. 71-87.
e A
s,
t" 2. F. 4. Crossman, 4, J, Wwarren, A, S. D, dang and G. E. Law, "Initliation and Growth of Trausverse
.- Cracks and Bdge Delaminaticn in Composite “aminates, Part 2. Experimental Correlation," Journal of
._-':. Composite Materials, Vol. 14, 1980. pp. 88-106.
o 3. A. S. D. #ang, P. C. Chou and C. S. Lel,"A Stochastic Model for the Growth of Matrix Cracks in Com-
.‘. posite Laminates,” Journal of Composite Materials, Vol, 18, 1984, pp. 239-2%4.
q"'
N 4, A. S. D. Jang, M. Slomiana and R. B. Bucinell,”"Delamination Crack Growth in Composite Laminates,*
o ASTM STP 876, 1985, pp. 135-167.
o EE—
N 5. S. C. Lel, "A Stochastic Model for the Damage Growth During the Transverse Cracking Process in Com-
y posite Laminates,” Ph. D. Thesis, Drexel Univ. 1986,
':- 6 R. B. Bucinell, "Stochastic Simulation of delamination Growth in Laminates Subjected to Fatigue
e Loading,” Ph. D, Thesis, Drexel Univ, 1986,
"'-r 7. A. S. D. wWang, N. N. Kishore and C. A. Li, "On Crack Development in Graphite-Epoxy [0 90n]s Lamina-~
::‘ tesUnder Uniaxial Tension," Journal of Composite Science and Technology, Vol. 23, 1985, pp. 1-31.
AT
® 8. A. 5. D. dang, E. S. Reddy and Y. Zhong," Three Dimensional Simulation of Crack Growth in Notched
> Laminates,” Paper presented at the 2nd Annual Meeting, Soclety for Composite Materials, Unlv, of
*.- Delaware, Newark, Del. 1987,
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e ON MODELLING INTRALAMINAR AND OBJECTIVE
“;t':"" INTERLAMINAR CRACKS IN
e )
e GRAPHITE-EPOXY LAMINATES 7O DEVELOP A DESCRIPTIVE APPROACH FOR
;.::,:: THE INITIATION AND CUMULATIVE GROWTH OF
gt SUB-LAMINATE MATRIX CRACKS, BASED ON
o FAILURE MECHANISMS THAT OCCUR AT THE
! PLY LEVEL IN GRAPHITE-EPOXY LAMINATES,
)
e A.S.D. WANG AS A FUNCTION OF LOADING AND LOADING
e DREXEL UNIVERSITY HISTORY.
r PHILADELPHIA, PA 19104
WA
vl
L
7
0 APPROACH SUBLAMINATE FAILURE MODES
s
¥ 5: -INTRALAMINAR & INTERLAMINAR CRACKS-
: * Observe matrix cracking mechanisms at the
l » ply level by non-destructive and destructive
! : ominot i
4 inspection methods.
q '}. * Identify the individual cracking mechanisms [ 1
' Eiber Motrix
A (intralaminar and interlaminar) and simulate ~Occurs ot -Occurs
= : Final Failure Low Stress Leve!
o, each of them by means of 3-D ply elasticity,
1 5‘,3 effective microflaw assumption and elastic ' l |
4‘1‘3 fracture mechanics. intra_Ply Inter Ply
- * simulate crack growth due to interactions of =Matrix Failure ~Matrix Failure
o that Follows Fibers that Follows Path
e the two basic forms ef cracking mechanisms. - Tronsverse Cracks r:m:m to Laminate
ntertaces
::*. % vary controllable influencing parameters of - Delamination
E’,:. geometric (ply thickness, laminate thickness,
" WV stacking sequence, straight and curved free Oslemination
+0
31 edges, sharp notches, etc.), loading (tension, ' ) '
o compression, fatigue) and environmental )*v e X Tromsvores
Z- (temperature, humidity) origins. ' n
;::j: *» correlate the experimenta) and the simulated
. results.
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2-D AND 3-D MODELS FOR STRESS ANALYSIS

——

BASIC MATRIX DAMAGE MODES LAINATION my
THEORY ELASTICITY
INTRAPLY CRACKING M00E INTERPLY CRACKING MODE
teg T
‘ " .;’ : J ¢.8- Transverse Cracks) (e.9. Free Edge Delamination) tiele fiele
i M- -5 - " e
;l." ‘ ifet, 288 et ics
,“:' Damage « Crack Oensity (ck/cm) Oamage = ares :f Delamination 0
fl. j ck/cm a @
L
R ==
RN Ay
frnyy oorn e < intertace interface
¥ :,:‘_ln‘_ § matching : matching :
1N il 1
{ INFLUENCING BARMETERS: Ply thictness, By stacking x @ :::t:lz ?.'5.7:::'
e Leoding lever, roading history, comperature, humidity, etc.
a “aEVF
¥
W
MG Y
J'.l‘
Wb boundary Y
¥, . o conditions : conditions ;
o rawry > partially completely
LT -t satislies satisling
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' SOME DAMAGE MODELS FOR COMPOSITES®
h
.:}' D.H. Allen, W.L. Bradley, C.R. Corleto, C.E. Harris, R.A. Schapery, Y. Weitsman
Y
’;' Texas A&M University
i College Station, TX 77843
W
. ABSTRACT
R
\':‘ Research on four projects is summarized. Projects No. 1 (Allen and Harris)
:,n and No. 2 (Weitsman) are presently concerned mainly with constitutive equations and
» their dependence on quantities (“internal state variables") which reflect the state
“l". of damage. Each uses a different type of a physically plausible internal state
variable. Project No. 3 (Schapery) deals mainly with damage growth and a method
using a "work potential”which characterizes mechanical behavior in damaging
- processes. Project No. 4 (Corleto and Bradley) covers the use of a J integral
: (which depends on existence of the work potential) in mode II delamination; also
- included is a new technique to measure displacement field.
a*y
o 1. D.H. Allen and C.E. Harris have developed a constitutive model for fiber-
O reinforced laminated composites which includes the influence of
® microstructural damage on the stress-strain behavior of a composite
" structure. The effects of microcracks are reflected via internal state
N variable (ISV's) in the constitutive equations rather than treating each
n microcrack as a separate internal boundary. Furthemore, the model is
! phenomenological because only the average macroscale effect of microcracking
Ny is modelled rather than the effect of each individual crack. Because cracking
4 is not statistically homogeneous in the coordinate direction normal to the
P laminate, statistical weighting is necessary in this direction, and this is
_ accomplished via kinematic constraints. Therefore, the constitutive equations
‘;l are laminate equations, rather than standard stress-strain equations.
! The objective of the recent effort is to extend the model to predict the
response of laminates with both matrix cracks and interior delaminations.
This problem is complicated by two factors. First, because these two damage
: mechanisms are oriented differently, they require two separate tensor-valued
N damage parameters. Furthemore, the mechanics of these two damage modes are
i substantially different. The matrix cracks may be assumed to be statistically
e homogeneous in the z coordinate direction. This requires that a modification
v be made to the statistical averaging techniques Although statistical
. homogeneity is assumed in the x and y directions, a kinematic constraint
>, similar to the Kirchhoff-Love hypothesis is applied in the 2z direction. The
. resulting damage parameter is a weighted measure of damage, with delaminations
-\( away from the neutral surface causing a greater effect on laminate
' properties. Using fracture mechanics concepts to relate the 1SV's to the
’ current damage state, model predictions of the degraded axial modulus are
5 compared to experimental results in the accompanying bar chart.
1
I 2. A continuum damage formulation is provided by Y. Weitsman for unidirec-
'-» tionally reinforced composites, based upon fundamental principles of
'::..- irreversible thermodynamics and continuum mechanics. A damage parameter
L f (internal state variable) is introduced which represents the total area of
4 microcracks contained within a characteristic material cell. This
® representation enables the correlation of damage growth with micro-level
s ) fracture processes, which can include the effects of crack interactions. The
N general formalism 1leads to stress-strain relations which contain damage
e softened moduli and the effects of damage on the re-orientation of material
'\: symmetry. In addition, coupling phenomena such as the effects of damage on
;\ heat conduction, can be incorporated within the theoretical framework.
3 Probabilistic considerations of micro-flaw sizes and distributions can be
..' employed to convert the formalism from a deterministic to a statistical
o methodology.
2
ﬂ-: |
"'. *Sponsored by the Air Fcrce Office of Scientific Research
! 39
i




'xw 3. Damage growth and its affect on mechanical behavior of composite materials
) and structures is studied by R.A. Schapery. An energy-based approach is
g used. The mechanical work input is shown for relatively general damaging
f‘ processes to be a potential consisting of strain energy plus the work of
; damage. In turn, the existence of this so-called work potential leads to
o equations which govern the growth of dJdamage parameters (internal state
, variables). There is considerable freedom in selecting damage parameters; but
" if one of the parameters is taken as the work of damage, the equations
;ﬁ governing their growth become very simple. Some results from axial-
190 3 torsional tests of bar specimens (rubber-toughened graphite/epoxy
laminates) are shown to provide a check on the theory for proportional
straining. Confirmation of the theory for nonproportional straining is
presently under study. Viscoelastic effects have been introduced irn the model
by approximating theoretical results obtained from viscoelastic crack growth
theory.

5

15?k~/f‘

P

4. A J-integral analysis has been developed by C.R. Corleto and W.L. Bradley for
mode II delamination of a split laminate loaded vertically on the split end
with the other end rigidly supported against vertical displacement, but free
to tranglate in the horizontal direction. This approach allows one to analysze
load-displacement data which is both nonlinear and has an inelastic
component, The results for Jy;. are identical to Gy;. when linear load-
displacement data are analyzed. However, Jize is generally much lower than
Gyic for nonlinear load-displacement curves becasue G may include far field
damage when the area method is used. Linear beam theory applied to nonlinear
load-displacement curves also gives artifically high values for Grie*

A new technique also has been developed on the project ‘o directly
measure the displacement field around the tip of a growing crack. This
technique involves placing a dot map on the surface at 5-10 micron intervals
and then directly observing the distortion of the dot map as the crack
approaches. Quantitative image analysis allows the original coordinates and
the subsequent coordinates of the dots in the map to be found, allowing
accurate determination of the displacement of each dot. The resulting
displacement field can then be used to calculate a strain field around the
crack tip.
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CONTINUUM DAMAGE MODEL POR UNI-DIRECTIONALLY
REINFORCED COMPOSITES

Y. Weitsman - Civil Engineering Department
Grant AFOSR-87-0128

1. OBJECTIVE: Develop «constitutive equations for damage, coupled with
temperature and moisture.

2. METHOD: Employ fundamental concepts of continuum-mechanics, irreversible
thermodynamics and fracture mechanics.

Step 1: Representation of profuse microcracks
y a continuum, internal state variable.

Select a statistically representative volume
element containing N microcracks. (See Fig. 1)

(a) Crack defined by area, but possesses two
faces. Hence employ vector, but sense is
immaterial.

Details are known only statiscally hence:
N
(N microcracks) ~ (£ individual cracks)

(c) Internal state variable
N

(k (k)
a5 = (kY |
Fig. 1: A Representative ij kild i b j (1)

Volume Element for a
Fiber-Reinforced Composite 1In eqn. (1) d;{k) is the non-dimensional vector-

with Micro-Cracks. valued area of the kth microcrack.
(d) Properties of damage variable:
Symmetric second rank tensor. Finite magni-
tude. Non-dimensional. Provides proper symmetry
results. Also: Has clear physical meaning, hence growth can be inferred from

fracture mechanics. Enables accounting for crack interactions and derivation of
damage growth relations.

Ste 2: Employ basic principles of continuum mechanics and irreversible
thermodynamics to derive stress-strain relations, flux-gradient relations, and
interaction relations between mechanical, thermal and diffusion quantities.

Step 3: Damage growth laws. Determine damage growth relations from a model
fracture-mechanics solution on a micro-level. For instance BVP shown in Fig. 2,
where crack orientation w and crack size a are random variables.

' _>
- A -
« w
Ppa > X
- —
- —»p
- —_——-

Fig. 2: A Crack at the Interface of a Cylindrical

Inclusion and an Exterior Region (r=a, w-<8 <w 4+a)

Which is Subjected to Remote Uniaxial Tension o =p.
x
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Solve deterministic problem, via fracture mechanics, to relate crack growth to
geometry, material properties and loads, then cast results in a probabilistic
context and evaluate probabilistic values of incremcntal increase in damage

parameter Aa ij

3. RESULTS
(a) Character of stress—~strain relations:
.= S + 8 [ (2)

P po Pq q
where, for instance, for a uni-directionally reinforced medium one obtains

S10 = C2 * C3(a372y,),  ete
S11 = 2Kglay1-az7) + 2(Kq+Ky3) + 2K, 4(a;,-a55)%, etc.
+++. are functions of the transversely isotropic invariants of
ependence on a; E is generally non-linear, which enables the
£

ects. Compliances s__. exhibit softening with
p&\en all microcracks are

where C 3
5ote. th&t J
xnéorporatxon of crack-interaction &
damage and symmetry changes under patterned damage. (e.g.
parallel, transverse isotropy switches to orthotropy).

In addition, the thermal and moisture induced strains § are affected by
damage. po

(b) Heat conduction and moisture diffusion

T _ .

it (kij T,j),l + 4 (3)
Thermal diffusivity k;; depends on damage, and dissipation o involves damage
growth-rate, damage and lttess gradients, and stress-rate.

am :
a_t- = (Dijm,j),x + Ri;i (‘)

Moisture diffusivity D;; depends on damage, and moisture fluxes are deflected into
directions of 1ncteasxn3 damage.

4. CONCLUSIONS
(a) Have a self-contained continuum damage model.

(b) Interactions with moisture and temperature may lead to synergisms.

REFERENCES
Y. Weitsman: "Coupled Damage and Moisture-Transport in Fiber-Reinforced Polymeric
Composites". 1Int. J. Solids & Struct. (Forthcoming)
Y. Weitsman: "Damage Coupled with Heat Conduction in Uni-Axially Reinforced
Composites”. Proc. ASME Symp. on Constitutive Modelling for Nonconventional

Materials. (Forthcoming).
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A MODEL FOR DAMAGE GROWTH IN COMPOS!TES
BASED ON WORK POTENTIALS

R.A. Schapery
Civil Engineering Department
Texas AlM University

0BJECTIVE

DEVELOP A METHCD FOR CHARACTERIZING AND PREDICTING DAMAGE GROWTH EFFECTS [N
ELASTIC AND VISCOELASTIC FIBROUS COMPOSITES,

APPROACH

1. DEMONSTRATE THEQRETICALLY AND EXPERIMENTALLY THAT MECHANICAL BEHAVIOR
WITH GROWING DAMAGE CAN BE DESCRIBED THROUGH A GLOBAL STRAIN-ENERGY tIKE
POTENTIAL (CALLED TWE “WORK POTENTIAL*).

2. USE THE WORK-POTENTIAL THEORY TO ESTABLISH EQUATIONS WNICH GOVERN GROWTW
OF DAMAGE, AS DEFINED By ONE OR MORE PARAMETERS (INTERNAL STATE

VARIABLES).

3. D0BTAIM MECHANICAL PROPERTIES FROM PROPORTIONAL STRAINING TESTS.
INITIALLY USE AX[AL-TORSIONAL LOADIWG OF BAR SPECIMENS.

4. COMPARE THEORY AND EXPERIMENT FOR PROPORTIOMAL ANO NOMPROPORT [ONAL
STRAINING.

5. EXTEND WORK TQ VISCOELASTIC COMPOSITES.

DEFINE THE TOTAL ENERGY FOR THE ACTUAL {BAMAGING) PROCESS AS
Npz e HC (5)
WHERE
W« uay A (g, A
We < WA (9,)0 A
THUS

My = (g, A

NOTE THAT

;‘q'm'(;r‘;r)— (6)

WHICH YIELDS

9, - u, n

THMEREFORE, FOR THE DAMAGING PRICESS

W ®

FROM €Q. (7),

q
¥r = [ Qqday @)

THUS, Wy IS THE WORK INPUT TO A MATERIAL OR STRUCTURE DURING THE
ACTUAL PROCESS. IT IS CALLED THE WORK POTENTIAL.

THEORETICAL BASIS FOR A WORK POTENTIAL FOR AN ELASTIC MATERIAL
WITH DAMAGE

ASSINE A STRAIN ENERGY FUNCTION EXISYS: W = N(wq, Ag)
WERE

qq = IMDEPENDENT GEMERALIZED DISPLACENENTS (STRAINS, CURVA-
TURES, €C.)

Ay = ALL DAMAGE-RELATED PARAMETERS (SUCH AS SURFACE AREAS 07
CRACKS) WEEDED BESIDES q TO SPECIFY STRAIN ENEAGY. W WAY
ALSO DEPEND ON OTHER PARAMETERS, SUCH AS TEMPERATURE AND
WOISYURE .

Q = dfag, = Qylag A) )

OURING A ONWAGING PROCESS, ONE OR MORE OF THE A, ARE TINE-DEPEWDENT. FOR
THOSE THAT ARE NOT CONSTANT (DENOTED BY A )e ASSUME THEY OBEY CRACK-LIKE
GROWTH EQUATIONS (AVAILABLE EWERGY = REQUIRED ENERGY)

We = Mc(A,) « WORK OF NICRO-OR MACROCRACKING (E.G. W = T'A)
EQUATION (2} YIELOS (ASSUNING STABLE GROWTH)

A = A(gy) £}
FROM EQUATION (1),

8 = Qy(ag A,(ay)s A) “

WHERE A, 1S THE SUBSET OF CONSTANT Ay .

APPROXIMATE REPRESENTATION OF Wy USING A SMALL NUMBER OF
INDEPENDENT *EFFECTIVE" DAMAGE PARAMETERS. D,

IT IS REQUIRED THAT THE WORK INPUT Wy BE A POTENTIAL FOR EACH DAMAGING
PROCESS:
0 ot (10)
WHERE
Wy = Ny(aq. Op)
D, IS THE SUBSET OF D, WHICH CHANGES
Dy IS THE SUBSET OF D, WHICH IS CONSTANT

LET W = W(qy, D,) BE THE STRAIN ENERGY, SO THAY

9 %' m

CONSIDERING OME D, AT A TIME, IT CAN BE SHOWN THAT (10) AND (11) IMPLY THAT
€ACH D, MUST OBEY THE FOLLOWING DAMAGE GROWTH EQUATION:

v M

WHERE Wy = Wg(D,). [T ALSO FOLLOWS THAT
Vg e M- W 13)
LET D) = Wg. USING EQ. (12) THE DAMAGE-GROWTH EQUATIONS BECOME

L ¥ g re2,3,... (14}
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APPLICATION TO AXIAL-TORSIONAL LOADING OF BAR SPECIMENS

[ g
“"’_{( & — g —~ }%_f
R L o

FIGURE I, LAMINATE SPECIMEN USED IN AXIAL-TORSIONAL TESTS.

g =V 98
Q~F Q=T

FROM EQ. (8) (IF AND ONLY IF A WORK POTENTIAL EXISTS),

£ a9
INTEGRAT ING,
2 (]
r-mfonmwso (16)
WHERE

F° - ro(u) = axial force for g=0
8T = 7 - To

T° = torque for U » 0

FIGURE 2 SHOWS THAT EQ. (16) IS IN GOOD AGREEME' N1 ENPERIMENTAL RESULTS.

aT 1S FROM F16. 3.

———— = prtemtal
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CONCLUSTONS

EXISTENCE OF THE WORK POTENTIAL WAS ESTABLISHED TMEORETICALLY AND CHECKED
EXPERIMENTALLY FOR PROPORTIONAL AXIAL-TORSIONAL STRAINING OF TWO DIFFERENT
GR/EP COMPOSITES. (ALSO CHECKED FOR NOMPROPORTIONAL STRAINING OF A
PARTICLE -REINFORCED RUBBER.)

DAMAGE GROWTH EQUATIONS WERE DERIVED FROM THE WORK-POTENTIAL THEORY.
AXTAL-TORSTONAL DATA HAVE BEEN PREDICTED USING ONE DAMAGE PARAMETER (Wp).
THE WORK POTENTIAL PROVIDES THE BASIS FOR J INTEGRAL FRACTURE THEORY.

THE THEORY HAS BEEW EXTENDED TO VISCOELASTIC MATERIALS USING AN
APPROXIMATE METHOD. RESULTS ARE ANALOGOUS TO THOSE FOR TIME-AGING (CVCLE-
AGING) ELASTIC MATERIALS WITH MONOTONIC (CYCLIC) LOADING.

REFERENCES
R.A. SCHAPERY, "DELAMINATION AND FRACTURE CHMARACTERIZATION OF [INELASTIC
COMPOSITE MATERIALS USING POTENTIALS," POLYMER ENG. SCI. 27, PP, 63-76
(1987).
R.A. SCHAPERY, "A CONSTITUTIVE TMEORY FOR COMPOSITE MATERIALS WITH DAMAGE
GROWTN BASED ON MULTIVALUED WORK POTENTIALS," TEXAS ABM UNIV. REPORT MO,
MM 5034-87-5 (1987).
R.A, SCMAPERY, W.M. JORDAN, ANO D.P. GOETZ, “DELAMINATION ANALYSIS OF
COMPOSITES MITH DISTRISUTED DAMAGE USING A J INTEGRAL,* PROC. INT. SYWP,
O COMP. MAT. AND STRUCTURES, T.T. LOO AMD C.T. SUN (EDS.), TECHMOMIC, PP,
$43-548, 1986.
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:&% MODE 11 DELAMINATION FRACTURE OF COMPOSITES:
gk A J INTEGRAL APPROACH
c*.‘n
i
i €. R. CORLETO
ﬁp W. L. BRADLEY
o >,
by DEPARTMENT OF MECHANICAL ENGINEERING
i§ TEXAS ASM UNIVERSITY
V)
e ;
Qo* OBJECTIVES
X
[) »
e TO DEVELOP A METHOD TO CHARACTERIZE THE MODE !1
gﬁ DELAMINATION FRACTURE TOUGHNESS OF COMPOSITE
{' MATERIALS WITH MATERIALLY OR GEOMETRICALLY NON-
N LINEAR BEHAVIOR USING A J INTEGRAL APPROACH
DA,
NI
Q;
® APPROACH
- RESULTS
™
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0
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T
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-
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o DIRECT DETERMINATION OF STRAIN FIELD AROUND TIP OF GROWING CRACK
¥

:.‘ M. HIBBS, L. CHAKACHERY AND W. L. BRADLEY

ta

v

DEPARTMENT OF MECHANICAL ENGINNERING
TEXAS AZM UNIVERSITY

szﬁ OBJECTIVE: TO MEASURE THE STRAIN FIELD AROUND THE TIP OF A GROWING CRACK
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HEXCEL F185 RESIN (COMPACT TENSION SPECIMEN WITH FATIGUE PRECRACK).
LEFT-UNLODED; RIGHT-LOADED. NOTE X IS VERTICAL AXIS; Y IS HORIZONTAL AXIS.
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w(max) = 1.14

o1 = n.10
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;v;‘ ANELASTIC DEFORMATION AND FRACTURE OF THERMOPLASTIC-MATRIX FIBER
vg#. COMPOSITE AT ELEVATED TEMPERATURES
N
M4
o Professor S. S. Wang
B National Center for Composite Materials Research
N Departments of Theoretical & Applied Mechanics
i and Aeronautical & Astronautical Engineering
1\) University of Illinois, Urbana, Illinois 61801
":ﬁ
".".
?“? ABSTRACT
ey
(0
3"' Recent advances in fiber and polymer science and engineering have made
PON advanced thermoplastic-matrix fiber composites an important class of

composite materials for potential critical applications at elevated
g temperatures in high-performance structures such as aircraft construction.
}*ﬁ While the thermoplastic composites possess recognized advantages of
T
¢

i flexibility in fabrication and processing, high fracture toughness,
iy excellent damage tolerance, and elevated temperature stability, some of the
uf basic problems of deformation and failure of the materials are still not
:ﬁg well understood. In this paper, fundamental behavior of deformation and
W fracture of a neat thermoplastic aromatic polyamide matrix is studied first
® both at room temperature and at elevated temperatures. X-ray and
N transmission electron microscopy studies are conducted to examine the
N morphology of the resin. Dynamic-mechanical properties of the resin are
L characterized for the later mechanics analysis. Elevated temperature creep
T behavior also is examined, and constitutive equations for the anelastic
;x deformation are obtained. A fracture mechanics approach is taken to

; determine the temperature-dependent toughness of the thermoplastic matrix.
r The results obtained provide a solid basis for the work on the
: unidirectional composites.

‘§¥. Also in this study, fundamental mechanisms and mechanics of a
‘xg- anelastic deformation and fracture of a unidirectional thermoplastic-matrix
‘SN composite are presented. in the experimental phase of the study, a
Tl graphite fiber-polyamide matrix thermoplastic composite is used. The DSC

. . thermal analysis is conducted to examine the influence of different
processing variables and heating/cooling rates. Dynamic-mechanical
properties of the unidirectional composite are determined to serve as a
reference for detailed creep and relaxation studies. Both in-plane and
interlaminar creep behavior have been investigated, and significant
difference is observed, apparently due to the microstructural change in the

LI

Lririret( )

oy laminate thickness direction. The crack growth and fracture behavior in
.ﬁ‘ the unidirectional composite are studied at several levels of elevated
1Vl temperatures. Mechanisms of large crack-tip plastic deformation and
® associated crack-growth process are examined for later analytical modeling.
) In the theoretical part of the study, time-temperature-dependent
:-q constitutive equations for unidirectional thermoplastic composite are
T developed based on anisotropic viscoelasticity in conjunction with several
I sets of experiments. The opening-mode fracture mechanics study is
) b- conducted by the use of a geometrically nonlinear DCB model and analysis.
A :g Time-temperature-dependent fracture toughness of the composite is obtained
AL in detail. This research provides important information on the basic
o mechanisms and mechanics of deformation and failure for this class of
26 composites.
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4 COUPLING OF MOISTURE AND DAMAGE IN COMPOSITES

CONTRACT NOOO14-82-K-0562
OFFICE OF NAVAL RESEARCH
PRINCIPAL INVESTIGATOR: Y. WEITSMAN, TEXAS AlM
SCIENTIFIC OFFICER: Y. RAJAPAKSE, ONR
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~
o OBJECTIVE: INVESTIGATE FUNDAMENTAL ASPECTS OF MOISTURE TRANSPORT PROCESS IN POLYMERIC COMPOSITES
:,;::. AND ITS COUPLING WITH DAMAGE.
i’ ‘
R METHOD:  EXPERIMENTAL AND ANALYTICAL.
B¢ M)
':c:': EXPERIMENTAL. Expose coupons to fluctuating ambient relative humidity at fixed
oL X ) (moderate) temperature and measure:
NN 1. Weight-gain and weight loss in composites and neat resin.
: : 2. Deformations (curvatures) of anti-symmetric laminates.
o 3. variations in delamination fracture toughness.
o
‘] 4, Compressive and shear strengths
®
S . Inspect for damage via SEM
;\‘.'c ANALYTICAL.
o
:?"‘; 1. Solve for elastic and viscoelastic fielcs in laminated plates under
WK
W fluctuating humidity.
.5‘ Y ng y
f 2. Develop stress-assisted diffusion relations for viscoelastic materials.
R
:t':.l' 3. Develop a continuum damage theory coupled with diffusion.
Nad)
.:::3 4. Evaluate micro-level damage phenomena due to moisture employing fracture
‘:".
,‘.:, mechanics.
) CONCLUSTONS
) ﬂ'l“
o 1. The diffusion process in viscoelastic materfals is non-Fickean. There is an fnteraction
W'e
.\'J;{- between the transport process and the relaxation behavior of the polymeric material.
\ ’
-. ):‘ 2. Damage due to moisture ingress in fiber-reinforced poiymeric composites appears as wicro-
y ..4‘-: debondings at the fiber/matrix interfaces. The fundamental causes of that damage are not yet
.ﬂ
:'-f:: known. Mechanical causes are possible but chemical effects are the most 1ikely reasons.
\
’ '-_':J: 3. Damage is an irreversible phenomenon that depends on moisture history, not merely on current
‘e
i
:" moisture content. More damage is caused under fluctuating humidity than under exposure to
-7"- constant ambient humidity.
oY
.,:_L: 4, Like al) fatigue phenomena the above damage exhibits wide scatter. Exposure to humid
-
-":::: enviromments is likely to increase the scatter in material properties (such as strength) more
LR
.:’" than degrade the average values.
‘.‘v: 5. Moisture ingress and damage are synergistic mechanisms.
S
S:'.r 6. Results and conclusions may vary widely among material systems.
‘N
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i:::i:
j::,_ SOME ANALYTICAL RESULTS
£ o ¥
O
"' 1. STRESS ASSISTED DIFFUSION
I
.::":.E (a) Basic equations
"W
:::‘.:: Consider a thermodynamically open system, since matter is added from the ambient.
iV
::.R Balance eqns: bg * pg Vv =0, m=-7.f
w“.\l d
N T Ivosudv = j’AaUnJVi dA - ‘rAq‘"‘ dA
;').a‘ ¢
1) ~
oy -IP—ni-n “-Iﬁfﬂd‘
A 'YL a
L/
-:‘ o where o 1is mass density of solid, vy is velocity of solid particles, m vapor mass, fiv flux, u
e,i:! energy bf solid-vapor mixture per unit mass of solid, o4 stresses, q heat flux. p, » and U are
SRS vapor pressure, density and internal energy, respectively:
Entropy inequality:
hhi d -
::...' at Ivossdv 2 IA(qilT)"i dA - fAs fin, dA
4: where s is entropy of solid-vapor mixture per unit solid mass, qy is heat flux, T {s temperature,
and s is vapor's entropy.
a:". By familiar substitutions obtain the reduced entropy inequality
o [
[ | IR ogS T - e4y 311 - (Qy/Tgy + u W - f, by-S9f 20
) where o is Gibbs free energy per unit solid mass, c,, strains, gy = aT/aX, temperature gradienmts,
Pl and u = (p/s) + & - 1§ denotes the chemical potentidf of the vapor.
e
Syl (b) Linear viscoelastic response with moisture diffusion.
)
)"- Consider ¢ = ?(o s M, T, v ) where y_ (r = 1,...N) are scalar-valued internal state vartables
] which represent the Hternal deﬁrees of Freedom of molecular motion and conf igurat fon within the
LA polymer.
A
\::':‘ By entropy inequality have - Rr :r z 0 where R, = %—::
'u.i A basic, "phenomenological® relationship: R. = -b..(m, T, o );
‘o...: r rs p!'s
‘
‘,'ﬁ' From entropy inequality and Onsager's relations b, are components of a symmetric, semi
w positive definite matrix.
) , For small stresses expand ¢ in powers of o4 get
>
o _ 1 1
o3 ¢ =3 - Biog v evy -3 Mooyt Par 105 2 Ves s
o
o) (140 = 1,000 65 rys = 1,.... N).
-~
-." a,B,, 8, +e-+ Vg depend on m and T.
g Considerations of stability of equilibrium states gives V.o = V.. and V. positive definite.
I 2 _ . M
:‘i Growth law a, brs Yg gives
A\ -
3 byg ‘S+Br+Pjr°j+vrs vg =0
;‘ Hence can eliminate Yp and express it in terms of Bps Oy and time in the form of
:3 y = C(1-e7*Y + Dj(l-e"’t)aj.
~ ¥
"::i Thus € = - %g— give the desired, linear time-dependent strain-stress relations.
. -
<5 In addition u = 2 gives
e %5 1 1
[) b B it e Y T T Mim %1% Pigm %5t 2 Ves,m YrYse
:':: Therefore u depend on time and is quadratic in o,.
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Boundary condition for diffusion problem 1is u(m, T, x) = u‘(_l_) where u‘ is the chemical
potentia) of the ambient vapor, and x are boundary points.

Hence equilibrium moisture content is quadratic in o and the moisture transport process
involves drift toward equilibrium.

The sTmpTest modification of a 1-0 diffusion process is

F 3 :17 -L<X<i, t>0
m(x,0) = mg(x) Initial Condition

m(sL, t) = my{t) Time Dependent boundary condition even for constant ambient R.H.

Typically, for const R.H., m(t) = m, + @ (l-e't" ) + Iz(l-!-t/‘ } ¢+ ... where Tye Yo oo
are of order of viscoelastic relaxdtion times. (see Figure 8).

2. COUPLING OF MOISTURE AND DAMAGE

(a) Damage Parameter

Consider a volume element of finite size, which represents statistically the geometry of a
multi-phase composite, including distributed profuse micro-cracks.

Let "damage” be the resultant of the areas of all micro-cracks contained within the volume,
non-dimensionalized by the wall-area of that volume. Express damage by a skew-symmetric second-
;ank tensor dlpql' Since sense of d,m] is immaterial results should depend only on even powers of
lpql:

Let ¢ = 0(°1J' m T, dlpq])

For sufficiently small stresses expand ¢ up to second powers of o,.. However ‘(NI is not
necessarily small, hence coefficients in Taylor's expansion depend on H T and lel'

Basic principles of irreversible thermodynamics and continuum wechanics give:

{(b) Stress-strain relations

>~ Spo * Spq %

where expansional strains S, . and compliances § q depend on ‘lpql (demage softening effect) and
global symmetry is 1nf)uence3 by damage oriennti&t.

For instance in the case of initial transverse fisotropy, as obtains for unidirectionally
reinforced composites, we have

- 2 2
S10 =8y * 513(d!311 - d[32]) . etc.
B 2 2 \2 2 2
Siy 7 2lvg * valdpgyy - dy3p))” + vgldgyy - "|3z|)z* m! ) etc. ,
where 8,, B3, vps Y32 Ygs Yq) (etc.) depend on m, T, d[lZl and (6“31 + dl23|)'
Note that the terms with B3s Y3+ vg tntroduce changes in material symmetry.

(c) Moisture transport relations (flux-gradient relations)
General form is

fi =045 o with diffusivities Dy; that depend on m, T, damage fnvariants
J
Also u = %% , gives
3 _p3m o a(damage invariants)
ax; ax; ax;

where A, B are functions of m, T and damage invariants. Hence A accounts for damage effects on
diffusivity, while B is a "non-classical" term, which couples damage and diffusion. B8 expresses
the reorientation of the moisture flux into regions of higher damage.

Consequently boundary conditions, thus saturation levels, vary with time as damage grows.

In addition, since moisture flux is drawn into directions of higher damage - while damage
growth is enhanced by moisture, have a theoretical indication of a synergistic mechanism,

) ¢,
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Fig. 11: Moisture-induced damage
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crack coalesced to form a long
continuous crack,
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4 ADVANCED CONCEPTS FOR COMPOSITE STRUCTURES
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J’; ABSTRACT

¢ Graphite-epoxy replacements for conventional metallic medium-primary and secondary
,ﬁka structures have demonstrated that organic-matrix composite materials can reduce the
B structural weight of transport aircraft. However, the full potential of these composite
¥ materials has not yet been realized. The full potential of composite materials can be
Lot realized by developing optimally-designed composite structures that are both more struc-
( turally efficient and more cost effective than current metallic or state-of-the-art

e composite structures. Creative research on new and innovative structural concepts, in

W particular concepts for wing and fuselage primary structure, is needed to achieve this
‘J\ potential for future transcentury aircraft. These new structural concepts should take
A advantage of advanced materials and of new and emerging fabrication techniques. 1In
ﬂfﬂ. addition, the validated structures technology associated with these new structural con-
‘ﬁb) cents is needed to provide the confidence essential for the use of composite materials
"- for future primary aircraft structures.

YT Advanced concept composite structures are described in figure 1 as being:

\ik: (1) optimally~designed to exploit the unique characteristics of composites; (2) fabri-
: o cated from advanced materials and material forms; and/or (3) processed using cost-

' effective techniques. The results of preliminary studies for advanced concept composite
P & structures are presented herein. Analytical results are described for several advanced
sr. concept cover panels. Experimental results for filament-wound plates, for small scale

r cover panels, and for large scale cover panels are also described. The structural

‘?“F efficiencies of these cover panels are compared.

o The structural efficiency of optimally~designed, compression-loaded graphite-epoxy,

cover panel concepts was analyzed. Typical material properties for the analyses are

2 \ presented in figure 2, and the analytical results are shown in figures 3~7, These

B results were obtained using the PASCO (Structural Panel Analysis Sizing Code) computer
Iy code [1] and were compared with existing structural efficiency results for aluminum

™ aircraft compression panels [2].

J

Structural efficiency results for hat-stiffened cover panels are shown in figures

ﬂx 3 and 4. Panels using advanced material forms such as woven fabric, braided fibers,

41\: ard quasi-isotropic stitched and unstitched laminates are evaluated. Results for panels

|}¥, fabricated from unidirectional graphite-epoxy tape are also included for comparison.

éb{ The braided fiber constructions have the best structural efficiency of the advanced

'L material forms: the unidirectional tape constructions have the best structural effi-

® ciency of all the cases considered. Structural efficiency results for stiffened cover

e panels fabricated from two material systems are shown in figures 5-7. The results

\.‘ indicate that panels made of IM6-18081 material are more structurally efficient than

§ panels made of AS4-3502 for all load levels. Hercules Incorporated manufactures AS4-

W 3502 graphite-epoxy and IM6é graphite fiber, and American Cyanamid Company manufactures
18081 epoxy matrix. The results also indicate that changes in panel configuration

'$t¢ affect the structural efficiency. Other cover panel configurations such as a NACA-Y

'.;f stiffened panel, an octogon stiffened panel, and a multi-cell cover panel are evaluated.

v Experiments were conducted on filament-wound plates and on stiffened panels

‘~r: fabricated from advanced material systems. All specimens were loaded in axial compres-

AN sion to failure, and the results are shown in figures 8-15. Asymmetric filament-wound

0 n, plates made of Celion-6K fiber and Shell Epon 9400 resin and containing holes are shown
W& j\ in figure 8. Two types of filament-wound plates were tested: (1) single circuit speci-
S mens that minimize fiber crossovers and that are similar to tape specimens; and (2)
A multi-circuit plates that contain many fiber crossovers. The specimens were tested to

o determine the effect of holes on the compressive strength of filament-wound laminates,
43%: and the results are shown in figure 9. Analytical and experimental studies for two

. types of stiffened panels, a fluted core panel and a thermal expansion molded (TEM)
'ﬁ:? panel, were conducted and the results are shown in figures 10 and 11. The fluted core
N i panel consists of two face sheets and a woven triangular core. The TEM panel was 58
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g} constructed using a potentially cost-effective processing technique. Closed-cell
! specimens are shown in figure 12. Structures that use this closed-cell concept may be

‘Q\ fabricated by filament winding or by pultrusion. Results for a compression-loaded

! pultruded specimen are shown in figure 13. A damaged tolerant, blade-stiffened cover

»ﬂ} panel is shown in figure 14. Two of these panels were designed and built by the

S Douglas Aircraft Company using IM6-1808I. The first panel had no detectable damage and
the second panel was severly impacted between stiffeners before testing. Tese results

iy are shown in figure 15 and indicate no strength reduction due to impact damage.

)
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>
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)
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5 Figure 2. Typical Material Properties
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* No damage growth
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URI CENTER ON MANUFACTURING SCIENCE oOFf
COMPOSITE MATERIALS

A. Crowson

Materials Science Division
U.S. Army Research Office
Rasearch Triangle Park, North Carolina 27709

ABSTRACT

The objective of the initiative in Manufacturing Sclence s to establish a sclence
base for advanced, automated manufacturing processes for future Armay aateriel needs.
In an effort to fulfill this requirement, the University of Delavare was selected as a
Center to address fundamental issues in the manufacturing science, reliability and
maintalnability of composite structures. The program is fategrated with the National
Engine2ring Research Center for Compnsite Materials, establisched ian 1985 by the
National Science Foundation. While the program addresees the entice acea of
manufacturing, reltability, and maintainability, f{t strongly emphasices the goals of
controlling and butlding in quality, long life, predictable and reliable performance,
durability and lower cycle costs instead of minimum reliance upon repaicr or rejection
of poor quality after manufacture is cowplete.

The approach employed under the Manufacturing Science initiative involves an
fntegrated multidisciplinary effort on thick section laminates and woven forms, using
both thermonsetting and thermoplastic matrix materials. Research thrusts {n the areas
of manufacturing and processing science, mechanics and materials design, and durability
are being pursued to address {ssues 2ssoclated with the fabrication, non-destructive
evaluation, relfability, and durability of these materials. Particular emphasis is
beling given to cure sensing and control of thick section thermosetting composites,
thermal and mechaanical characterfzation, structure-property relatfonships, mechanics of
thick section composite laminates, and methods for non-destructive evaluation. The
identification, sensing, active control, and integration of each of these key
components into a processing scheme is central to the final development of a truly
"intelligent” manufacturing cycle for these advanced materlals.

In keeping with the central theme of thls symposium, current cesearch efforts in
mechanics and materials design under the Manufacturing Science {nfitiative are essential
in designing thick section composite laminates which are tough and damage tolerant. In
order to identify and optimize the factors controlling this behavior, a fundamental
understanding of the processing/property/performance relationships as they relate to
stiffness, strength, and fracture toughness is required. Research which is bdeing
supported in addressing this goal include the architectural and microstructural design
of fiber preforms, the characterization and modeling of the response of cowposites to
uniaxial and biaxial loadings, the determination of failure modes and toughening
mechanisms under static and dynamic loadings, the characterization of in-plane and
interlaminar properti=s, and the effect of processing and three-dimensional state of
stress on strength and fracture of thick section composites.
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;?_ Research Goals

RN

ii‘q' e Engineering of tough composites
R for applications under static

~._ and dynamic loads

Eﬁ  Optimizing composite toughness
Pt

® through the design of 2-D and
3-D textile composites

* Optimizing composites damage
tolerance by fiber hybridizations
and tough thermoplastic matricies
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e Fracture resistance of 3-D
fabric composites

LA A

\‘,‘. A e

e Modeling of thermo-elastic properties
of 3-D interlocked fabric composites
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FRACTURE MECHANICS ANALYSIS

investigation of the infiuence of structural form on
the fracture resistance of 3-D fabric composites.
Key parameters:

eVolume fraction of reinforcement as
affected by bundle size and spacing
o Orientation of reinforcement

® Constituent material properties

THERMO-ELASTIC PROPERTIES

Modeling the thermo-elastic properties of
composites reinforced with 3-D textile preforms;
constructing "performance maps" for various
preform geometries, such as braids and
angle-interlocks; extending the model to

"thick section” composites.

Example model systems:

matrix
cracking L

Cracked Orthogonal Angle Interiock Fabric
Fabric Composite
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:WN. RECENT DEVELOPMENTS IN MECHANICS OF COMPOSITES AT THE
Wy MATERIALS TECHNOLOGY LABORATORY

. D. W. Oplinger

;'. Army Materials Technology Laboratory

!ff' Watertown MA 02172

& ABSTRACT

\ﬁ@ Current Army interests in composite materials stem from potential applications to
o

flight hardware such as that addressed under ACAP and the Blackhawk rear fuselage, as
well as a number of missile systems. In addition there is growing interest in appli-

A
-

q,d cation to ground-based materiel, including light-armored vehicles of the Bradley
;5. class, lightened artillery systems, tactical vehicles and miscellaneous equipment such
g as tow bars for field recovery of tanks and other vehicles, roll bars, trailer side

L panels and others. Moreover, current activity related to development of MIL HDBK

. 17B of which a first draft is to be issued soon, has instigated a number of efforts
f' . and development of statistical methodology for structural allowables which are of

o2 interest.

oy
Y Mechanics research at MTL is aimed at the needs of such applications. The MTL
R ) mechanics of composites effort currently falls into the categories indicated in
s Fig. 1. Names of appropriate Points of Contact are included in the Figure for the
¢ convenience of those who wish to obtain information on the items listed. The following
. discussion will treat these item-by-item. (References cited in square brackets at the
Q:ﬁ beginning of each section below are listed in the corresponding Figures.)

’

. i

o

o

?B’

IMPROVED FE METHODS FOR SINGULARITIES[1-3] This effort is aimed at improved
methods for predicting failure modes in composites where stress singularities may be
crucial in failure initiation, ie.,interfaces, boundaries, cracks and delaminations.
(Fig. 2). The discussion will treat an efficient finite element approach for evalu-
ating the singularities which characterize stresses in such situations, based on an
interative approach for solving eigenvalue problems of the finite element stiffness
matrix used to model them. The method involves repeated multiplication of an arbitrary
displacement vector by the inverted (ie. flexibility) matrix to extract the eigenvec-
tor of the stiffness matrix naturally associated with the singularity; a method for
dealing with complex eigen-vectors and -values associated with cracks in dissimilar
media and other problems of interest will be described.

)

A
i WA,

-

[ ] IMPROVED THICK PLATE FINITE ELEMENT APROACHES[4-6] Thick plate effects are
A especially important in organic-matrix composites because of the low interlaminar
'*)f shear and transverse normal stiffness. The effort is based on so-called "anisopara-
TR metric" interpolations for improving transverse shear representation while completely
N - removing "membrane-" and "shear locking". A major recent development is the inclusion
(S of thickness normal deformations based on C°-continuocus kinematic approximations.
i:): Representative results shown in Fig. 3 illustrate pertinent static and dynamic anal-
ses.

® Yy
‘f:ﬁ APPLICATION OF MOIRE METHODOLOGY TO COMPOSITES[7-10] Moire has provided a

hh foundation for much of the mechanics of composites activities at AMMRC/MTL over the
iuj years [7] The discussion will cover applications to nonlinear in-plane response of
RV pin-loaded plates (8,9], thickness-wise response of pin loaded plates, and impact
Y
by "“;
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(]

32 damage tolerance in composites. Recent work on nonlinear response in pin loaded 0/90
;f and +:/- 45 laminates [9] will be extended to include the modelling of inital damage
8 effects.

Ly

) APPLICATION OF FE METHODS TO FRINGE PATTERN ANALYSIS [11] A new method of moire
P, fringe pattern analysis based on the use of finite element methods for interpreting 2D
!' optical density and elastic displacement fields will be discussed. The method

. represents a considerable advance over a finite-element based approach first proposed
) * in the late 60's using least-squares fitting of optical fringe patterns. It employes
e a new penalized least-squares variational principle which gives rise to low-order,
o1 high-efficiency smoothing/differentiating finite elements. The method involves finite
A0 element reconstruction of both the optical density field from a digitized version of
jgy the fringe pattern and the displacement field from the reconstructed fringe pattern.
»

“) IMPROVED METHODS FOR STRESS ANALYSIS OF ADHESIVE JOINTS[12-14] A thick plate

£ analysis method similar to the "BONJO" and "BOND4"[13,14] programs developed in the
ahi early 70's will be discussed in terms of efficient procedures for analyzing stresses
\§ in lap joints. Comparisons with FE methods will be described.(Fig. 6 ). A particular
A objective 1s the development of alternative methods to FE analysis for bonded joints.
% In particular, an approximate model analogous to a Volkersen shear lag type model in

':é which thickness-wise displacements of adherends are ignored but the Volkersen model is
extended to include adherend deformations will be discussed.

STATISTICAL METHODOLOGY FOR DESIGN ALLOWABLES [15-17) This werk in support of MIL

: i H'BOOK 17 [15] has recently been directed toward more efficient non-parametric methods
1 for attaining allowables. In Fig. 7 is shown a comparison of allowables obtained by
N the new version of the non-parametric approach with that obtained assuming a Weibull
o] distribution. The "MARS" code which has been developed over about ten years for

t=~ providing a variety of statistical analysesrelated to allowables determination is
L2 continucusly being updated as new developments are perfected; this has been made

o available to the FAA and a number of other outside organizations .

| A

\}‘ CCNSTITUTIVE EQUATION REPRESENTATION FOR COMPOSITE MATERIALS [18,19]

2N Also in support of MIL H'BOOK 17 is a methodology which has been developed for easy
::‘ representation of stress-strain data for composites. The method involves fitting

o individual stress-strain curves as generated by chart recorders, using one of 7

-
’

choices of analytic function, determined by a best fitting process, and averaging the
curves for all tests in a given set to provide a representative curve. Examples are
shown in Fig. 8. A tutorial workshop on the code which has been developed to produce
this type of analysis is planned. A data base representing the typical spectrum of

3 mechanical properties for several hundred composite materials has been generated.

.

[ ENVIRONMENTAL EFFECTS IN COMPOSITES [20,21] Recent efforts have been directed
! toward: (1) improved torsion testing methods for filament wound tubes (Fig. 9 [20]);
U {2)influence of processing effects such as braiding vs. filament winding in aramid and

glass fiber compcsites on mechanical properties; (3) effects of prepreg exposure to
clevated temperature to mechanical properties of composites [21].

i
z? DEVELOPMENT OF NDE METHODOLOGY FOR COMPOSITES {22] Current efforts in the area of
o NDE tor composites involve development of ultrasonic methods for fiber volume and
<,{n porosity determination. A new method under development (Fig. 10) involves development
‘S of C-scarn plots of ultrasonic dilatational and shear wave velocity vs. position, and
. using appropriate equations, translating these to fiber volume and porosity plots. B
o scan plots aisc are providing information on layer boundaries and delaminations.
=N
f: DAMAGE ZONE CHARACTERIZATION IN NOTCHED LAMINATES (23-25] Over the years MTL has
B - pursued models for characterizing progressive damage in notched laminates in terms of
':- "damage cones" analogous to yield zones in metals as a means of characterizing
o progressive damage in notched laminates. The work described in [23] is in support of
- h this effcrt. Related work being conducted at MIT on embedded strain gages in the
A vicinity of sharp notches will be mentioned in passing. A brief review of work
L presented some ycars ago on failure in angle ply laminates [25] will be given. A film
:ﬁ strip showing dynamic crack propagation using moire for crack-front visualization in
,f an angle ply laminate will be shown in the presentation.
1
-
@
'
\
1
1 79
d
O
")
@
'
Yl
":' OO LN LN LR R N STRORRS » RN LYy ™, . SV e G, ot s A L R A T A L RS LT AT,
“.. *?'F "" TR AN Y =Sl ' ‘t. MRLTH ML G ANARG Gl i T ot (g




H "Q
¥ g;i‘
D)
¥, (Y
v ACTIVITY INT OF CONT gg_u‘_; 5:_,
I.: \ 1.IMPROVED FE METHODS FOR SINGULARITIES R. Barsoum ( -S166
::\: 2.THICK PLATE FINITE ELEMENT METHODOLOGY A. Tessler L * -5356
]
"‘Q'u 3.APPLICATIONS OF MOIRE ETC. TO S. Sersbian - 5260
’ MECHANICS OF COMPOSITES
Al 4.APPLICATION OF FE METHODS TO MOIRR A. Tessler * * 53%
.l' W PATTERN ANALYSIS
Wy
":‘. S . IMPROVED METHODS FOR STRESS ANALYSIS D. Oplinger " " 5303
Wy ' OF ADHESIVE JOINTS
?
:::'!. 6.STATISTICAL METHODOLOGY FOR DESIGN D. Neal . * 5166
ot ALLOWABLES
—~
L 7.CONSTITUTIVE EQUATION REPRESENTATION R. Papirno » = 52
\:,:n S FOR COMPOSITE MATERIALS
¥y 0
']'l' ‘ 8.ENVIRONMENTAL EFFECTS IN COMPOSITE N. Roylance " " 5514
W MATERIALS
t
:::'. 9.DEVELOPMENT OF NDE METHODS FOR COMPOSITES R. Brockleman . * 533
Jp
’!\' 10.STUDIES OF DAMAGE DEVELOPMENT IN POLYMER D. Oplinger/ . * %303
MATRIX COMPOSITES J. Mandell(MIT)
el
: "H.;’\
Ay
-,{-. Fig. 1 SUMMARY OF MTL MECHANICS OF COMPOSITES ACTIVITIES
Y
b
‘d""\
@
N [ 4
-l P O mw ﬁ L]
M. SattRial FROOLER ) - 0.0000
. Qs 0B
.‘ '* “
Yol ] "’"2""1
l. [ ] 1 _.M
i. . 4 o )
! LI (3
ey - 4
1
> o R ol
B (2 s 1
s 1
oy b
e - ] j
] L)
+ Sl ]
N ] " L
D\y - ~ry —r-vt — e
. - - -~ -
.: & foum amLe
s
4
“ THE FINITE ELEMENT ITERATIVE METHOD (FEIM)
A ~ 1). APPLY ANALYSIS TO FAN-SHAPED DOMAIN
1590 Finfe Element Mesh for Herative Mathed. 2). APPLY ARBITRARY DISPLACEMENT FIELD CORRESPONDING TO SELECTED
3] ﬁg CRACK~LOADING MODE (I, II OR III} OR MIXTURE OF MODES TO
. OUTER BOUNDARY, Rb
Ol 3). SOLVE FOR DISPLACEMENTS up AT RADIUS R_ (In a GP program
15 .5~ MO, 13
“_-";'\- Anatyticat Sefutien ":m:’m the reanalysis option if chosen, otherwise store the
"‘.)-F»‘ fELM, A - inverse stiffness matrix)
g Soaly 4). IMPOSE u, ON OUTER BOUNDARY
=" 1.0 I’ fee10 s
" P ! 5). REPEAT STEPS 3-4 TO CONVERGENCE (Three iterations required
.\'l -, 4 in=0.34 to extract singularity and angular stress and displ.
K. .."& _ 5_17 Uy '““l’i‘z"."'n':‘" distn. using the Raleigh quotient approach)
. ?EOA ]
'
[/ J? ERE
[ X
$'$ 1. R. §. Parsoum, "Cracks in Anisotropic Materials - An Iterative Solution of the
B "n') gigenvalue Problem™ Int. Jnl. of Fracture, v. 32, pp. 59-66 ,198%6
h :"{ b 4 2. R. S. Barsoum “Theoretical Basis of the Finite Element Iterative Method for the
' t', -0.!! —r—r—r % —r——+ : —r—r—y } —r !'44 Eigenvalue Prodblem in Stationary Cracks”™ to be published , Int. Jnl. Num. Meth. in
’1,‘ ™ » » - Engineering
Arge 8 3. R. S. Barsoum, "Application of the Finite Element Iterative Method to the
.___ Eiqenvecior x-Direction - Mole | Lewting. tigenvalue Problem of a Crack Between Dissimilar Media”, to be published, Int Jnl Sum.
SR
ahe
' ’QF,', fig. 2 IMPROVED FINITE ELEMENT METHODS FOR STRESS SINGULARITIES
¥ " 80
\ Wt
o
P ..‘_
b
«

%
560 T
Ot e et "'r"-*',

AL S S P o R O I P

P YL % 'u"y"’d‘"ﬂ'\' NP SR LAY 90 T ot "
b 8. ) LS - 3! O, h () (%
MOTR I vl T RN P et ) IO R G OAIE DRSO IO K R CK E y




»

“’
i
,' Pr AMALYSIS BY HIGHER ORDER PLATE THEORY (“HOT"
s ."“o oA SIMPLE AND EFFECTIVE HIGHER-ORDER BENDING THEORY;
R Y INCLUDES TRANSVERSE SHEAR AND THICKNESS MORMAL
DX STRAINS. RETERONCES
(M *HOT THEORY DERIVED FROM 3D BLASTICITY VIA 4. A. Tessler and §. B. Doag, *On a Hi hy of Conforming Timosh Bean E1
"l‘ VARIATIONAL PRINCIPLE t Composites and Structures, v. 14, 335-344, 1881 .
v 5. A. Tessler and T. J. R. Hughes, "A Three-dode Mindli
*LEGENDRE POLYNOMIALS APPROXIMATE THROUGH-THICKNESS . B Plate Rlement with Improved
prge DISPLACEMENT, STRAIN AND STRESS. Transverse Shear”, comp. Meth. Appl Mech: Engnrg. V. 30. pP. 71-121, 198
() €. A. Tessler, "Shes £ ble 1 Pena.
B «C-COWTINUOUS ANISOPARAMETRIC KINEWATIC Eiptay nEzuobs Pos miATE _m__snze'g,ndm_‘_:'_ugﬁr;g' 'ith;;m"'mgm"‘gnuwugt
,:"' APPROXIMATIONS USED IM FE IMPLEMENTATION. {eds.” T. J. R. Hughes E. Hinton, Piner Press International, . 1986) )
% ¢ *THEORY AND FEA VALID THROUGHOUT THE RANGE FROM
(o THICK (SHEAR-COMPLIANT) TO EXTREMELY THIN
z; . {Kirchhoff) BEAMS, PLATES AND SHELLS
) 1®' BENDING MODE s S-m0R/2D (SMAQUS) 5.0.¥. 2me towuens
W G 1™ TRANSVERSE MODE LD e ) s e
~
L] =53 - 3 A yy/19° vedisec wyy/10° ead/nec Gy fugy=1 100
. eiiid F et m
.‘-)‘, siEdl i “ﬁj = U s.em .0 -5
\* = 115 s T3t (D] 13.742 13.004 -5.00
L "-" i1 EH“" siily i nn n.ae .. .5
k) ' Frets! 34 : t3pasestises iFET ) .00 P R™ s
&’n' eh ! 20 . .08 .0
.: s ) »n. %940 “.02
’ ' rd ) n.n3 0.1 1.42
# 2™ pENDING MODE 3™ TRANSVERSE MODE s n.. n.. %
- o [--o (3] 37108 37,220 «©n
=] T3, - cewpdg) T Tpd sofaomes i) ».02! 20.629 [ X ]
N 4%5* a. ] .
== s
«‘.'l %E = 1 L’u@q A Bt u, = waber of slwasta, 8, © mamber of taqress-ef-frantes
i. —~rb-u H ");1' 5 %\EEE::E b bending mde, t o transverse esds, &  asie} weds.
o - S ERT 2 oEa N ha 35
R 2 SESEE
"‘ 3 PREDICTION OF REPRESENTATIVE BEAM COMPARISON OF PREDICTIONS -- 2D VS.
R} .L MODES BY ABAQUS 2D SOLUTION (8 NODE "HOT" APPROACH (64 EL/ 120 DOF}
. ELEMENTS: $12 EL/3266 DOF)
h METAWNTIN OF TRABAVARAY WIRBAL FYRENS (o | PREDICTED BY
o » . D WP CRATE TRDAT BEAR SLIIVETS DR TWCK WESLY-WVDATES
o Fig. 3 IMPROVED FINITE ELEMENT METHODS s cmern st atae s ot
R \)_- FOR THICK PLATE/SHELL ANALYSES e o
o\ APPLICATION OF "HOT" TO 1 <
) CENTER LOADED BEAM —
¥
4
“,‘ - 076N (1500880  MORE ANALYSS Prpcrbigr i
AW
i
o
ol
W
Voo
R . ———— LINEAR
3»; v FELD - == NOMMEAR
' "“‘\
i ’
) woans s
' ]
o
?" AMMRC/MTL WOIRE EFFORTS [7]
) 1008 TENSLE MISMATCH EDGE
N 0254 men (001 1) CONTOUR INTERVAL ° EFFECTS
P « I0SEPESCU SHEAR SPECIMEN
e PIN LOADED JOINTS
: “ELASTIC RESPONSE
} . -NONLINEAR RESPONSE
O -THICKNESS-WISE RESPONSE
; qu-' « DAMAGE DETECTION IN IMPACTED PANELS
\
':"‘-‘ « METHODOLOGY DEVELOPMENT
i L uFRD -ou‘r-or-rw: DISPLACEMENTS
o -AUTOMATED PATTERN ANALYSIS
) *‘ COMPARISON OF LINEAR AND NONLINE AR
P, .)‘ SMEAR STRAN CONTOURS
\\::"
" v Q08 TENSLE MISMATOR
&) 0254 mm (001 i) CONTOUR INTERVAL
L,
) o
Experimental/Finite Element Displacement
o Contours (6678 N )
5,‘:;. .
'$ .‘, Fig. 4 APPLICATIONS OF MOIRE TO MECHANICS OF COMPOSITES.
!
ol 81
49
¥,
iV
Iy
'.
. £

...,e‘ﬂ’l\n. S ‘\r.'»‘l ;h :: ‘ x‘*.‘n‘; ‘.!n%‘n'.“‘:'.‘a'. A .l"a' '-*"a!".l".t ‘.! b, H.t. ¥y ‘::!*.u'u u, .n" .o'l.g ‘c’ .h,,n\ 'La'l :‘:.n ‘.‘n‘




[N &
)
i
o
[
Y
‘F: —:".
PO ;
: : TMON (1008 e} e Taw L
2 )
© LY e

Yy © B1¥0rartion srder

;I";l
ke
LA TR I
;:"::‘ e
'a",'i' ey, ETTERG T T
Mt CONTOUR MTRAVAL
“'. » 4006 v (89Y )
&
_o\ LN
o 5467 8 (1000 B) UT-Or-PLANE DISPLACENENT MEASURIMINT
'
‘0\ © PRODUCE PROJECTED SPECINEN GRATING BY POURIER OPTICS
: 2 * MROTOGRAMI GRATING AT PROSRESSIVELY INCREASING LOAD
e " TR ST s ervee
‘:.'q' w7 N (3100 Re) o
1'!?.
h —OP- CONTOURS 1.9."11-0-: “Application of Woire Wethods to Svaluatiea of Structural
OU'!.‘ g;:%‘glw : {::;onnu Compesite Materials" OPTICAL SWGIWERRING. v. 3, .536-632,
e ¢ (0/90/+,-45)54 grass EpoXY 8. D. Oplinger, C. K. Fressw and K. 2. Sandhi, “Exporimental and Analyt-
X “:’ ieal !Uuhnug- -:' Nonlimeer wul m of Notched I-.::nu'
[ ¥
)." #. 3. Serabian and D. Oplimger, tmental and Pint n—: Invest-
oy Fig. 4 APPLICATIONS OF MOIRE TO :-g;._:“ iace s eciantesl Rococase of §/50 i Losted Laninaces
y Mat.
2 o MECHANICS OF COMPOSITES (cont.). L petsestine o Betsas suin
D a g Fiolta Rechenice sympceies 197 s
“ Arey & e-_-m'-“::c,m-:.sm . Ctr. Wamw
LR Yoi
) .
‘\‘ ) APPLIGATION OF FE APPROACH TO MOIRE PATTEAN AMALYSIS (31}
W 1 amanrteu X008 1034x1024 pinere)” CITIIATION P —_—
H pinels
SV 2. 1ST SMOOTHING PR STEP: CONSTRUCT 2D LEAST-SQUARES
% REPRESENTATION OF OPTICAL DENSITY FIELD ::n‘ Tesslerz, C. l.m 8. mn:ink‘ml. . wun't and A,
s . USE TRACKING CONTOUR PROCESSOR TO CONSTRUCT Qenerating Strain Fields !ot noire Fringe M . S
. YRINGES (le. convours of ero opticel density gredieat) Mi5: [pigretionel coat. ¢ orr an Diows.
- 3. 2ND SMOOTHING FR STRP: PIT LEAST- SPLACRNENT
"' | FIELD TO FRINGE PATTERM Knp:n:‘yw:”m“ vy
1 . sufficiently noise-free fringe patterns)
:. ® OBTAIN DISPLACEMENT GRADIENTS FOR STRESS ANALYSIS
[ o,
.
oo
3 (A)
b
\':"s
Yy
[} 5
R
@
Lo
ol (A) ORIGINAL FRINGE PATTERN (Al plate)
1'g (B) FE GRID FOR OPTICAL DENSITY FUMCTION
b 3 (C) 3D PLOT OF DENSITY FUNCTION; RECONSTRUCTED FRINGES
[y 13 E 3 (D) 1 D SCAN OF ORIGINAL VS. SMOOTHED DENSITY
‘o A ALY X i (E} FE GRID#2 AND RECONSTRUCTED SMOOTH FRINGES
‘.I ;o AR
} .
W (B)
‘ (0}
. ()
[ .)-")
i )‘:"d
o
o
r > r,
1P
2*.
o s
':""
'Y Fig. 5 APPLICATION OF FINITE ELEMENT APPROACH TO MOIRE ANALYSIS

gy
l., P Y §
‘,4 G

. w avh i I P ) . "y ]
; .4' o ""t..'m':' 4’0“. .'t‘u S .-'m b.o'm ! "‘ -'*.:‘m .L‘.s“ﬂ W, “*. Ahel D ARERI AL '- IR



;-----
P
A

-

e r';“: <% ‘\)
MAAANLAL -

-~

g
o
LA

PP

LEZ @
J‘J"‘; -

>

-

L W

Jeut @
.4.'

b,y

o L ) 4 1
- Fa - |
| - J
* PROVIDE BASELINE SOLUTIONS FOR EVALUATING APPRCKIRATIONS -2 SHEAR UPP! LINE A
* OLUTICMS OUTAIND FOR NI GRAPHITE RICKY LOVER ADMEREND WITW a8
UIPER ADMEREND 3
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o'y + 0y independent of &
x
Txs " My.x (l-{) 3 t = sdherend thicks
Tya{220) = T, (bond shear stress)

RESULTING DIPF. BOUN.:

™, xx - .'5 =0 : T " ’b'nx oxp{~ax):

o= Onlli "é’ Pyt N
*"uﬁ E!:l». o,

1=y, 'y
(classical Vol.nnen analysis: n = 0)

ADVANCED APPROXIMATION :MODIFIRD GOLAND REISSNER

® ALLOWS FOR THICKNESS/NORMAL AS WELL AS SHEAR
DEFORMATIONS

* SINILAR TO BOND4/BONJO [13 14] OF EARLY 70°'S
IUT DEVELOPMENT BASED ON INTEGRATING a'

Txs distribution as above
* STARTS WITH ASSUMPTION:

]
o'y, = l‘(;f + I§ - !);:l (membrane + bending stresses)

® ABOVE EQUILIBRIUR EQUATIONS GIVE PARABOLIC SHEAR
STRESS DISTRIBUTION AS IN BEAM

® PROVIDES POR SIGNIFICANT EFFECTS OF STACKING
SEQUENCE

' of adherends

to get
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